Цей документ ознайомлює учнів з основами доведення нерівностей, включаючи класичні нерівності та ті, які містять змінну під знаком модуля. Важливі аспекти:
- Означення нерівності: Довести, що а б (а ≠ б), означає довести, що а – b > 0 (а – b ≠ 0).
- Класичні нерівності: Особлива увага приділяється нерівностям Коші та Коші-Буняковського.
- Методи доведення: Пояснюється використання суми чи добутку невід’ємних чисел, а також застосування очевидних нерівностей.
- Нерівності з модулем: Описано різні підходи до розв’язання нерівностей, що містять модуль.
Також пропонуються приклади задач з детальними розв’язками й завдання для самостійної роботи, які стосуються як доведення класичних нерівностей, так і розв’язування нерівностей з модулем.